On second-order Taylor expansion of critical values
نویسندگان
چکیده
Studying a critical value function φ in parametric nonlinear programming, we recall conditions guaranteeing that φ is a C function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of Dφ. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of firstand second-order directional differentiability of the optimal value function in parametric optimization.
منابع مشابه
Taylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملModeling of Nonlinear Systems with Friction Structure Using Multivariable Taylor Series Expansion
The major aim of this article is modeling of nonlinear systems with friction structure that, thismethod is essentially extended based on taylore expansion polynomial. So in this study, thetaylore expansion was extended in the generalized form for the differential equations of the statespaceform. The proposed structure is based on multi independent variables taylore extended.According to the pro...
متن کاملNUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملA HOMOTOPY PERTURBATION ALGORITHM AND TAYLOR SERIES EXPANSION METHOD TO SOLVE A SYSTEM OF SECOND KIND FREDHOLM INTEGRAL EQUATIONS
In this paper, we will compare a Homotopy perturbation algorithm and Taylor series expansin method for a system of second kind Fredholm integral equations. An application of He’s homotopy perturbation method is applied to solve the system of Fredholm integral equations. Taylor series expansin method reduce the system of integral equations to a linear system of ordinary differential equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 46 شماره
صفحات -
تاریخ انتشار 2010